STRUKTURERMITTLUNG STEREOISOMERER ARYLIERTER BICYCLO[3.1.0]HEXENONE

W. J. Seifert¹⁾, H. Perst* und W. Dannenberg²⁾
Fachbereich Chemie der Philipps-Universität, D 355 Marburg/Lahn

(Received in Germany 11 October 1973; received in UK for publication 30 October 1973)

Bei stereoisomeren Bicyclo [3.1.0] hexenonen la und la ist die Zuordnung von exo- und endo-ständigen Alkylgruppen R meist mit Hilfe der NMR-Daten zu treffen. Die dabei zugrundegelegte Regel "endo-ständige Substituenten R (la) absorbieren infolge Abschirmung durch die Enon-Gruppierung bei höherem Feld als entsprechende exo-Substituenten (la) ist bisher in einem Fall auch durch Röntgenstruktur-Analyse bestätigt worden.

Die Wbertragung dieser Zuordnungsregel auf die von uns photochemisch⁵⁾ aus 2.4.6-Triaryl-p-chinol-Derivaten <u>2</u> dargestellten Bicyclohexenone <u>3A</u> und $\underline{2B}^{1,2,6)}$ ist problematisch, da hier die Phenylkern-Einflüsse auf die chemische Verschiebung von R¹ nur schwierig abzuschätzen sind. (b) Tatsächlich konnten wir jetzt auf Grund von Röntgenstruktur-Analysen sicher nachweisen, daß in dieser Reihe Substituenten R¹ in <u>endo-Stellung (3A</u>) im NMR bei <u>tieferem</u> Feld absorbieren als bei exo-Anordnung (3B), vgl. Tabelle 1. Für die nun als <u>2Aa</u>, <u>3Ba</u> und <u>3Ac</u> bezeichneten Verbindungen hatten wir früher (a) unter gewissem Vorbehalt gerade die jeweils entgegengesetzte Stereochemie angenommen, was hiermit zu korrigieren ist. (b) Die Röntgenstruktur-Analysen wurden für die beiden 6-p-Bromphenyl-Derivate, den Methyläther <u>3Ab</u> (Abb.1) und das Acetat <u>3Ad</u> (Abb.2), sowie für den (bromfreien) Methyläther <u>3Aa</u> ausgeführt.

Tabelle 1a)

Verbin-	R ¹	х	R¹O → X Ø → H _A <u>3A</u>			X ⊙ OR¹ Ø Ø <u>2</u> <u>B</u>					
			Ausb.	Ausb. ^{b)} Fp NMR ^{c)}		c)	Ausb.b) _{Fp}	NMR	NMR ^{c)}	
			[%]	[°C]	გ ^{CH²}	δ _{HA} d)	[%]	[°C]	δ _{CH3}	δ _H A	
an B	CH ₃	H	32	205-6	3.02 (3.22)e)	3.60	5.6	157-8	2.85 (2.69)e)	3.45	
<u>b</u>	CH ₃	Br	28	229-32	3.07	3.60	0.8	138-41		3.39	
<u>c</u>	CH ₃ CO	Н	17	176-8	1.90 (1.56) ^e)	3.98	2.3	180	1.62 (1.52)e)	3.57	
đ	CH ₃ CO	Br	9	193-6	1.90	3.98	2	182-5	1.62	3.59	

a) Alle neuen Verbindungen gaben befriedigende Elementaranalysen; b) Ausbeuten an isolierter Substanz (c) NMR in CDCl₃, δ in ppm, TMS (int.) = 0; d) Dublett, J = 3.5 Hz; e) Werte in () δ_{CH_3} nach Hydrierung der C=C-Bindung von 3A bzw. 3B.

Für diese Verbindungen wird damit die <u>endo-Position der Methoxy- bzw. Acetoxygruppierung bewiesen. Einzelheiten zur Strukturbestimmung von ZAB und ZAB vgl. Tabelle 2^{9,10,11}, über die vollständigen Strukturen berichten wir an anderer Stelle. Erste Ergebnisse der Röntgenstruktur-Analyse des exo-Acetats ZBB zeigen auch dort die Richtigkeit der Isomeren-Zuordnung. ^{1b)} In jedem Falle gehören die aus Z in größerer Menge anfallenden Isomeren der <u>endo-Reihe ZAB an. ¹³⁾ Dies ist z.T. auf rasche photochemische Folgereaktionen von ZB zurückzuführen. ²⁾</u></u>

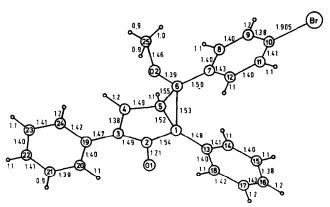


Abb.1
Bindungslängen für ZAb
(R-Wert 0.058)

Standardabweichungen C-0-Bindungen \pm 0.01 Å C-C-Bindungen \pm 0.02 Å C-H-Bindungen \pm 0.1 Å

No. 50

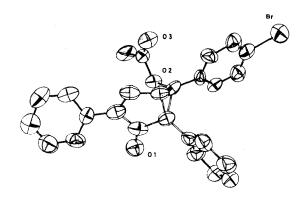


Abb.2
Kristallstruktur von <u>ZAd</u>
50%-Ellipsoide der therm.
Vibration
(H-Atome sind weggelassen)

Bisheriger R-Wert 0.102

Ubrigens führt die oft erfolgreiche Stereoisomeren-Zuordnung durch Hydrierung der Bicyclohexenone zu Bicyclohexanonen 3c bei $\underline{3A}$ und $\underline{3B}$ nicht zu eindeutigen Ergebnissen: Nur der endo-Methyläther $\underline{3Aa}$ zeigt die mit Aufhebung der Doppelbindung erwartete Tieffeldverschiebung 3c für die endo-CH₃-Gruppe im NMR 6b , während im endo-Acetat $\underline{3Ac}$ nach Hydrierung das CH₃-Signal stark diamagnetisch verschoben ist, Tabelle 1. Dem Hydrierungsprodukt von $\underline{3Ac}$ muß daher die Struk-

Ta	h	٦.	٦	_	2

Tabelle 2			
	<u>3</u> <u>∆</u> <u>b</u>	<u>34d</u>	
Kristallsymmetrie	triklin	monoklin	
Raumgruppe	PĪ (Nr.2)	P2 ₁ /c (Nr.14)	
Kristallkonstanten a	15.344 ± 0.003 Å	6.275 <u>+</u> 0.002 Å	
ъ	14.804 <u>+</u> 0.003 Å	8.885 <u>+</u> 0.003 Å	
С	9.993 <u>+</u> 0.002 Å	38.306 <u>+</u> 0.007 Å	
α	98.66°	(90°)	
β	90.30°	93.07°	
Å	116.69°	(90°)	
V	1998.2 Å ³	2132.6 Å ³	
Fooo	880	936	
z	4	4	
Dichte [g·cm ⁻³] gemessen	1.44	1.40	
berechnet	1.43	1.43	
Reflexe, vermessen ^{a)}	3736	1890	
Reflexe meßbarer Intensität ^{a)}	3079	1469	
lin. Absorptionskoeffizient µ [cm ⁻¹]	2.2	2.1	

a) Intensitätsdaten wurden vermessen mit dem automat. Vierkreisdiffraktometer der Firma Enraf Nonius Delft CAD 4 mit monochromatischer $Mo_{K\alpha}$ -Strahlung (Meßbereiche: $3\underline{\Lambda}\underline{b}$ 20 < 40°, 20/ ω -scan; $3\underline{A}\underline{d}$ 20 < 42°, ω -scan).

5002 No. 50

tur $\underline{4}$ zukommen, in der die Acetatgruppe durch einen Phenylkern abgeschirmt ist. 2,6b) Schwer interpretierbar bleiben die Hochfeldverschiebungen der exo-CH₃-Gruppen in den Bicyclohexanonen aus $\underline{3}\underline{B}\underline{a}$ und $\underline{3}\underline{B}\underline{c}$, Tabelle 1. Über die Stereochemie der Hydrierungsprodukte 1b,2) berichten wir gesondert.

$$\frac{3AC}{g} = \frac{AcO}{g} = \frac{AcO}{g} = \frac{AcO}{g} = \frac{Ac = CH_3CO}{g} = C_6H_5$$

Literatur und Anmerkungen

- 1. a) W.J.Seifert, Teil der Diplomarbeit, Univ. Marburg, 1971; b) W.J.Seifert, Dissertation, Univ. Marburg, 1974 (in Vorbereitung).
- 2. W. Dannenberg, Teil der Diplomarbeit, Univ. Marburg, 1973.
- 3. a) B.Miller und H.Margulies, J.Amer.Chem.Soc. <u>84</u>, 4527 (1962); b) A.Rieker und N.Zeller, Z.Naturforsch. <u>23b</u>, 463 (1968); c) M.A.Morris und A.J.Waring, J.Chem.Soc. [London] <u>C</u>, <u>1971</u>, 3269, dort weitere Literaturangaben.
- 4. D.I.Schuster, K.V.Prabhu, S.Adcock, J.van der Veen und H.Fujiwara, J.Amer. Chem.Soc. 93, 1557 (1971).
- 5. Bedingungen: 90 Min. UV-Belichtung mit Quecksilber-Hochdruckbrennern Hanau TQ 81 bzw. TQ 150 durch Pyrex-Glas; 10⁻² M Lösungen von 2 in Benzol.
- 6. a) H.Perst, Tetrahedron Letters <u>1970</u>, 4189; b) H.Perst, Habilitationsschrift, Univ. Marburg, 1972.
- 7. Die Korrektur wurde auch durch NMR-Daten von Modellsubstanzen nahegelegt. 6b)
- 8. T. Debaerdemaker, U. Müller und W. J. Seifert, Veröffentlichung in Vorbereitung.
- Rechnungen wurden ausgeführt an den Rechnern Telefunken TR4 der Zentralen Rechenanlage, Univ. Marburg¹⁰⁾, und IBM 370/145 des Fachbereichs Geowissenschaften, Univ. Marburg.¹¹⁾
- 10. LP-Korrektur: U.Müller, Programm zur Auswertung der Meβdaten aus dem Nonius-Vierkreisdiffraktometer CAD 4, Fachbereich Chemie, Univ. Marburg, 1971.
- 11. Alle weiteren Programme entstammen dem X-Ray 70 System des Max-Planck-Instituts für Eiweiβ- und Lederforschung, München, modifiziert für den Rechner IBM 370/145 des Fachbereichs Geowissenschaften d. Univ. Marburg.
- 12. Nicht nur nach Isolierung (Tab.1), sondern auch im rohen Belichtungsgemisch überwiegen stets die endo-Isomeren, 3A, bei weitem.
- 13. Im allgemeinen werden aus 2.5-Cyclohexadienonen photochemisch bevorzugt Bicyclohexenone mit dem sperrigeren Rest in endo-Stellung gebildet¹⁴⁾, was bei
 3Aa und 3Ba zu falscher Zuordnung führen kann, vgl. auch ⁴⁾.
- 14.T R.Rodgers und H.Hart, Tetrahedron Letters 1969, 4845.

i